

Manure and sewage sludge: Nutrient recycling and energy efficiency with improved technology

February 1, 2024 | ZAP-Facilities Groningen, Zernikelaan 17, 9747 AA Groningen

Same problem and same task for North Netherland and North West Germany

- **1. Problem**: Too many nutrients (phosphorus and nitrogen) in the environment
- **2.** Task: Increase production of CO₂-neutral electricity and heat
- **3. Task** (in Germany): Adhere to the new "sewage sludge regulation" (Klärschlamm Verordnung): phosphorus recovery from sewage sludge

Improved technology:

Hydro-Thermal-Carbonization (HTC)

- Converts <u>wet</u> biomass into <u>dried</u> biocoal
- Technically imitates the natural coal formation which takes place in nature over long geological time periodes (50.000 to 50 million years)
- was investigated by Nobel price laureat Friedrich Bergius and first described in 1913
- Technology: thermo-chemical reaction in aqueous solution: at around 170 °C, 20 - 25 bar, 2 – 4 hours

-> works like a steam cooker

-> see video how it works:

https://www.youtube.com/watch?v=c1efkfyuhn4&ab_channel=TerraNovaEnergy

AgrihumingmbH

HTC technology can help to solve the problem and to accomplish the tasks

- Use manure, digestate, sewage sludge and compost (contaminated with plastic and therefore difficult to sell) as feedstock for the recovery of phosphorus and nitrogen
- Conversion of wet biomass (which cannot be efficiently used as a fuel because of high water content) into a CO₂-neutral biocoal

Waste biomass conversion to biocoal and recovered nutrients

HTC-Biocoal + recovered nutrients (phosphorus and nitrogen)

Mass flow chart: Nutrient recycling and biocoal production with Hydro-Thermal-Carbonisation (HTC): City with 350.000 inhabitants

Biocoal potential from sewage sludge in NL and NRW

		sewage sludge @25% dry matter	potential biocoal production @90% dry matter	calorific value	natural gas equivalent			lignite equivalent	
		mio. tons/year	mio. tons/year	mio. kWh/a	mio. m³/year		'year	mio.t/year	
The Netherlands		1,3	0,27	775		77		0,27	
North Rine Westphalia		1,5	0,31	894	89			0,31	

calorific values values:MJ/kgbiocoal @ 90% dry matter10,3lignite @ 50% dry matter10,3natural gas10

kWh/kg 2,86 2,86 10 kWh/m³ good for 7.750 flats with consumption of 10.000 kWh/year

AgrihumingmbH

Case study: sewage sludge conversion for city (350.000 inhabitants)

Investment costs:	5	mio. Euro for one HTC-module
input:	23.000	t/year sewage sludge @ 25% dry matter
output:	4.800	t/year HTC-coal @ 90% dry matter + recovered nutrients + carbon concentrate for graphite production
produced calorific value	14	mio. kWh/year (as HTC-biocoal)
CO ₂ emission reduction	2.760	t CO ₂ /year (compared to natural gas, based on 0,201 kg CO ₂ /kWh natural gas)

Return of invest (ROI)	mio. Euro/year							
operating costs	-1,1	including depreciation						
saved disposal costs	1,5	reduction of sewage sludge @ 25% dry n		(based on 80	Euro/t for	18.200	t/year)	
produced economic value	1,1	compared to natural gas 0		0,08	Euro/kWh gas price			
saved carbon costs	0,2			83,59	Euro/t CO2; average carbon price 2023			2023
income fertilizer / conc. carbon sales	?	Euro/year						
cost for process water drain	?	for	18.200	m ³ water/year, depending on local conditions				
net profit	1,7							
Return of invest (ROI)	+/-3	years						

More Information:

Dr. Horst Meyrahn

Agrihumin GmbH,

D - 50321 Brühl

Tel: +49 (0) 162 1923752

info@agrihumin.de

Part of the work was funded by:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

